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GAS MOTION IN A LOCAL SUPERSONIC REGION AND CONDITIONS
OF POTENTIAL-FLOW BREAKDOWN*

By A. A. Nikolskii and G. I. Taganov

For a certain Mach number of the oncoming flow, the locel
veloclty first reaches the wvalue of the local velocity of sound
(M =1) at some point on the surface of the body located within
the flow. This Mach number is designated the critical Mach number

M... By increasing the flow velocity, a supersonic locel reglon

is formed bounded by the body contour end the line of transition
from subsonlc to supersonic veloclty. As 1s shown by observations
with the Toepler apparatus, at a certain flow Mach number M > M,,,

a shock wave is formed near the body that closes the local super-
sonic region from behind. The formation of the shock wave is
associated with the sppearance of an additional resistance defined
as the wave drag.

In this paper, certain features are described of the flow in
the local supersonic region, which is bounded by the contour of the
body and the transition line, and conditions are sought for which
the potential flow with the local supersonic reglon becomes impos-
sible and a shock wave occurs,

In the first part of the paper, the general properties of the
potential flow in the local supersonic region, bounded by the con-
tour of the profile and the transition line, are established. It
is found that at the transition line, if it is not a line of dis-
continulty, the law of monotonic wvariatlon of the angle of inclina-
tion of the velocity vector holds (monotonic law). An approxima-

tion 1s given for the change 1n wvelocity at the contour of the body.

The flow about a contour having & straight part is studied.

In the second part of the paper, an epproximation is given of
the megnitudes of the accelerations at the interior points of the
supersonic region. - With the aid of these approximetions, it is

*"Dvizhenie Gaza v Mestnoi Sverkhzvukovol Zone i Nekotorye
Uslovie Razrushenia Potentsialhogo Techerie." Prikladnaya
Matematika 1 Mekhanlka. Vol. 10, no. 4, 1946, pp. 481-502.




P4 NACA TM No. 1213

shown that for profiles convex to the flow the breskdown of the

potential flow, assoclated with an increase of the Mach mumber of
the oncoming flow, cannot he due to the formation of an envelope
of the characteristicse within the supersonic region. )

On the basis of the monotonlc law, the transitional Mach
number M is found, beyond which the potential flow with local
supersonic region hecomes impossible.

I - PROPERTIES OF POTENTIAL FLOW WITH LOCAL SUPERSONIC REGION
1. Properties of Supersonic Flow Bounded by Solid Wall
and Transition Line

The flow in the supersonic region about a wing profile of
usual form with a flow about it of a Mach number higher than
critical is considered. In accordance with these conditions, two
types of such flow may occur:

(a) Transition from supersonic flow to subsonic flow. - In
this case, the supersonic region is bhounded by part of the solid 2
contour AB and the transition line A= 1, which is indicated
by a dotted line, as shown in figure 1. The magnitude A\ = w/ay,
where w 1is the absolute magnitudse of the veloclty and ex is i
the critical velocity (the velocity at which the flow velocity is
equal to that of sound);

(b) Transition from supersonic flow to subsonic flow with
aid of shock wave. - In this case, the supersonic region is bounded
by the solid contour AB, +the transition line A =1, and the
shock wave CB (fig. 2).

Through each point of the supersonic region, two character-
istics of different families pess. The minimum angle between the
direction of the velocity at a given point and each of the char-
acteristics is equal to the Mach angle a.

If the veloclty vector is rotated by the angle o in a
counterclockwise direction, the direction of the vector will coin-
cide with one of the characteristice that shall be denoted as the
characteristic of the first family in contradistinction to the
other characteristic, which shall be denocted as the characteristic
of the second family. ’
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In case (a), each of the characteristics drawn from an arbi-
trary point P of the contour has a point in common with the
transition line A =1 (fig. 1).

In case (b), all the characteristics of the second family end
on the transition line, but not all characteristics of the first
family possess this property.

By displacing the point P on the contour in the direction o
toward the base of the shock wave B, it 1s found that originating
from e certein point D of the contour, the characteristics of
the first femily no longer end on the transition line bhut intersect
the shock wave (fig. 2). The essential difference of the flow with
local supersonic region from other mixed flows (for example, flow
from a Laval nozzle) lies in the fact that from each point of the
contour there originates at least one characteristic that ends on
the transition line.

The region ADCA, in which both characteristics drawn from the
points of the contour end on the transition line, is denoted as
region I; the region DCBD, in which only the characteristics of
the second family fall on the transition line, is denoted as
region II.

In case (a), the entire supersonic region coincides with
reglon I, hence, all theorems derived in this paper and the
approximations for the flow in region I, obtained from the single
assumption of the ending of the characteristics of both families
on the transition line, will also hold for case (a).

Hereinafter, there will often be considered, together with a
certain point P of the contour, simultaneous points on the
line A =1, which are the ends of the characteristics originat-
ing from point P. The end of the characteristic of the first
family will always be designated by the same letter as the point
of the contowr but with subscript 1 and by the sign *. Similarly,
the end of the second characteristic will be designated by sub-
script 2 with sign ¥, as shown in figures 1 and 2.

In the following derivations, the fundamental magnitudes are
the inclinations of the tangents at an arbitrary point P of the
contour to the axis of abscissas, denoted always by 6,; the

inclinations of the wvelocity vector on the transition line at
points Pl* and P,, are denoted by el* and 65y, respectively.

All three magnitudes ) el*, and 65, are functions of the
arc length of the contour.
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An arbitrary point P on the contour in the supersonic region
is considered. The characteristic of the first family FPp, 1is

represented in the plane of the hodogreph of the velocity by an arc
of an epicyclold of the second family P'P,.' (fig. 3). Let

@ =65, - 8 be the polar angle between the points Pjp,' and
P,'s For the magnitude A at the point P of the profile, the
following equation 1s cbtained:

A = £(95, - O) (1.1)

where A= £(6) is the equation of the epicycloid so set up that
the equation £(0) = 1 holds. This equation, as is known, has the
form (reference 2)

1) [l d
9=-§{X—_iarc sin E(- (x-1) 7‘] -

1 [X+L 1
arc sin [(x+1) 7—\-2- - x} +< %’3 - ) 3 (1.2)
In determining 65, from the given A and Gk
O2% = Ok + () (1.3)

where ¢ 1s the function reciprocal to f. The graphs of the
functions £(6) and o(A) are given in figure 4.

By considering the characteristic of the first family starting
from point P (fig. 3),

A= £(6 - 6q,) 81% = O - P(A) (1.4)

vhere f and ¢ are the same functions as in equations (1.1) and
(1.3).

For the points of region I where the characteristics of both
families end on the transition line, the following equation is
obtained from equations (1.3) and (1.4):

91* + ez*

- (1.5)

Oy =

LOTT
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Thus

THEOREM 1. - The inclination of the contour at any point P
of zone I is the arithmetic mean of the inclinations of the veloc-
ity vectors at the points of the tramsition line, which are the
ends of the characteristics starting out from point P.

Equation (1.3) and the second equetion (1.4) permit, for a
certain distribution of the velocitles on the given contour, deter-
mination of the inclinations of the velocity vectors at the ends
of the characteristics lying on the transition line.

2. Monotonic Law of Change in Angle of Inclination
of Velocity Vector on Transition Line
If in the equations of an adiabatic gas, the nondimensional
velocity A and the angle of inclination © of the velocity

vector to the x axis are taken as the unknown functions, the
Pollowing equations are obtained:

- M2 oA oA %0 _
(1 - M@)(cos 9-3-; + sin 9—5§> )\<in ea cos >
sin 622 - cos 622 4 Acos 622 + Asin 6 =0 (1.6)
ox oy ox oy

The character of the change of the magnitude 6 s&along the
line A =X, = constant. On one side of this line, let A<}

and on the other side let A >y (fig. 5). The normal to the
line A =23 1is drawn in the direction of decreasing velocity.

By considering & certaln point of this line and by teking the
direction of the ¥y axis to agree with the direction of the
normal to this point, from equation (1.6)

2 3A 36 e _
(l-Ml)sinelan-klsin91—+>\lcos Glan-o

os
cos 91-2—;‘-?\1 cos 91%2"7‘1 sin 91%§=° (1.7)

vhere M; 1is the Mach number for A =2A;, end 65 1s the angle
between the velocity vector and the positive direction of the



6 NACA TM No. 1213

tengent to the line A =2y at a fixed point of this line. By

eliminating from equetions (1.7) the magnitude 36/3n and by
determining from the obtained equation 36/ds

3 1-M% s 6 N
3s © Ay on

(1.8)

In the subsonic flow, 1 - Miz sin? 7 > 0 for any & and

because OA/On < 0, then 36/ds < 0. Thus 6, in this case,
changes monotonically along the line A\ = constant.

By considering the transition line where kl = 1 and by

starting from the assumption that the transition line is not a

line of discontinuity (reference 1), that is, that all the deriva-
tives 36/ds, 39/on, ONds, and ON\/On are finite on the tran-
gition line, the following equation is obtained from equation (1.8)

98 _ 299N —_
~ - cos S . (1.9)

end therefore the condition 38/ds < 0. Thus

THEOREM 2. - If a point moves slong the transition line so
that the region of subsonlc velocity lies to the left, the velocity
vector will monotonically turn in the clockwise direction.

The condition 36/ds = 0 along the transition line, in the
cese where a transition from the subsonic to the supersonic veloc-
ity occurs, was previously obtained by S. A. Christianovich.

The property of monotonicity is not, however, characteristic
for supersonic flow. In this case, the inequality 1 - Mé sin% 0> 0"
and the inequality 1 - M2 sin® 6 < 0 could hold and therefore the
value of 09/ds can change sign.

From further discussion, it will be clear that the fact
expressed by theorem 2 determines, to & considerable extent, the
character of the flow in the local supersonic regilon and also the
possiblility or impossibility.of the simultaneous existence of the
subsonic and supersonic flows without change in the potential char-
acter of the flow. This fact will hereinafter be termed the "law
of m?notonicity on the transition line," or simply the "monotonic
law."
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3. Property of Monotonic Change of Velocity Magnitude
and Its Inclinetion along Characteristics

By meking use of the results of section 2, it will be proved
that:

THEOREM 3. - If in the supersonic region there is given a
section of the characteristic of onme family, such that the char-
acteristics of the other family originating from the points of
this segment end on the transition line, the angle of inclination
of the velocity vector and the magnitude of the velocity are mono-
tonic functions along the given segment of the characteristic,

By considering a certain point C on the segment AB of the
characteristic, draw from the points A, B, and C to the line of
transition the characteristics of the family different from the
femily to which the characteristic AB belongs (fig. 6). The ends
of these characteristics lying on the transition line are Ay, By,
and Cy, respectively.

In the plane of the hodograph, points A, B, and C are
represented by the points A', B', and C', respectively, lying
on a certain epicycloid 7; eand the points Ay, B,, and C4

are represented by the points 4,', B,', and C.', respectively,

lying on the circle A = 1. 3Zach pair of points, A' and Ay',
B' and B,', and C' and Cy' 1lie on one of the epicycloids of

the family different from the one to vwhich the epicycloid 7
belongs (fig. 7).

As the point C' moves along the epicycloid 7 and its cor-
responding point C,' moves along the circle A =1, the polar

angles 6 &t the points C' and Cg' either simultaneously
decrease or simultaneously increase because each straight line,

@ = constant, intersects the epicycloid only at one point. When
point C moves in the seme direction from point A to point B
along the segment of the characteristic AB, the point Cy moves
along the transition line from point A, to point By likewise
in one direction as the characteristics of one family do not
intersect. In accordance with theorem 2 of the preceding section,
it Pollows that the point Cx' likewise moves along the circle

A =1 1in the same direction. Hence, the polar angle 6 <for the
point C' varies monotonically and, as follows from the properties
of the epicycloid, the magnitude of the velocity A likewise
varies monotonically for point C'.
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In the supersonic reglon I about the profile determined in
gection I, both families of characteristics satisfy the conditions
of theorem 3 so that in moving along any characteristic, the inclina-
tion of the velocity vector 6 and the magnitude of the velocity A
vary monotonically. For motion directed toward the transition line
along the characteristics of the first family, both magnitudes 6
and A monotonically decrease; whereas the characteristics of the
second family (the left one), 6 monotonically increases and X
monotonically decreases. From the obtained property of the mono-
tonic variation of the magnitude of the velocity and the angle of
inclination of the veloclty vector along each of the character-
istics of region I, 1t follows that this region 1s represented as
a single sheet on the corresponding region of the hodogreph.

In the supersonic region II, only the characteristics of the
first family satisfy the conditions of theorem 3. On moving elong
the characteristics awey from the.profile, both magnitudes 6 and
A monotonlcally decrease. On moving along the characteristics of
the second family in region II, the property of monotonicity of the
change in the magnitudes & and A does not, in general, hold.

By meking use of the known properties of the characteristics
in the plane of the flow and in the plane of the velocity hodo-
graph, the directions of concavity, as shown in figure 8, are
obtained in the region of applicability of theorem 3 for small
Mech numbers. This direction of concavity of the characteristics,
as follows from the results of S. A. Christianovich (reference 1),

takes place only in the cagse M < M = 2/«/3 -% =1.565. By mak-

ing use of the results mentioned, it is found that if M = My for

e certain point K in the region of applicebility of theorem 3,
the charescteristics have the appearance represented in figure 9.
Point K 1is always a point of inflection of the characteristics.

4. Variation of Velocity at Profile in Supersonic Region

It is assumed, as 1is usually the case, that in the supersontc
region the profile is everywhere directed convex to the flow. In
the supersonic region at the profile, an arbitrary point K end
the characteristic of the second family KKgy are assumed to
originate at this point (fig. 10). PFor point X from equation (1.1),
A = f(ez* - 6;) where f is the function introduced according to

equation (1.1).

=
a%o% = £'(8,, - 8) {1 + a:‘-_z%ﬂ] ) (1.10)
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In accordance with theorem 2, d95,/d(- 6) < 0; hence, by
meking use of equation (1.10)

By _dgk < £'(6, - 6) (1.11)

But 6y - 6 = @(A), where ¢ is.the reciprocal function
of f. Hence

£'(6z, - 6y) = £ [p(A) =%‘é>'\

1 4
where the differentiation is effected along the epicycloid in the
plene of the hodograph (fig. 1l1). Two points A and B are
assumed to be on the epicycloid, the polar angle between which is
equal to d6. The value of A 1s also assumed to be greater at
point B +than at point A.

From point A, an arc of the circle A = constant is drawn to
the intersection with the straight line OB at point C, the
length of the arc being teken equal to dd. The angle between the
tangents to the arc of the circle AC and the arc of the epicy- T
cloid AB at point A 1s equal to the Mach angle o. Hence,
d\ = tg o 40 and because dO0 = Ad8, then dANE6 = Atg a.

The graph of the function £'[p(A)] = Atg @ 1is given in
figure S. The inequality (1.1l) therefore assumes the form

dAN <
W S Atga (1.12)

As is shown by the preceding inequality, this value depends
only on the magnitude A at the given point. By comparing equa-
tion (1.10) and inequality (1.11), it is found that inequelity (1.12)
may be expressed as an equation if and only if at a given point of
the profile d6p,/@6, = O. If this relation holds true on a cer-
tain segment AB of the profile (fig. 12), the condition &, =

constent 1is obtained. All the characteristics of the second fam-
ily starting from AB are then represented in the plane of the
hodogrsph by the same epilcycloid of the second family 7y (fig. 13)
because at their ends, lying on the line A =1, the velocity is
constent. Hence, the entire region ABBZ*AZ* (fig. 12) 1is also

reﬁresented in the plane of the hodogreph by the segment of the
epicycloid A'B', upon which the points of the segment AB will
also lie.
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The characteristics of the first family in the region ABBz*Az*

must, in this case, be straight lines with constant velocity on
each, that is, in this region a certain Meyer flow (rarefaction)
mst occur. However, as will be shown in section 6, the realiza-
tion of such flow under the conditions of the problem is impossible.
Hence, in the relation (1.12), the equality can hold only at certain
points of the contour.

In the supersonic region I, the characteristics of the first
family likewlse end on the l1ine A = 1l. By applying considerations
analogous to those previously mentioned, the second inequality along
the profile in region I is obtained.

an
E(-—_GDE- Atg o . (1.13)

In the case where the equality in relation (1.13) is ettained
on & certain segment of the profile AB in the region bounded by
the characteristics of the first famlly originating at points A
and B, the tremsition line, and the profile, a Meyer flow (compres-
sion) takes place, the streight lines being the characteristics of
the second family (fig. 14). As will be shown in section 6, such
flow likewise cannot be realized under the conditions of the problem
end therefore, in relation (1.13), the equality can be attained only
at certain points of the contour. By combining relations (1.12)
and (1.13), the following inequality is obtained on the contour of
region I:

dA
a(- 9k5

Inequality (1.13) is of little interest in the case of a shock
wave that closes the supersonic region because in this case in
region I, the velocity generally does not decrease so that the rela-
tion refers mainly to the case of the flow with supersonic region
without a shock wave. In this case, region I coincides with the
entire supersonic region.

< Atg (1.14)

The equation for the change in the velocity can also be
obtained for the case where a certaln segment of the profile is
concave to the flow. Thus, for any peint C on the segment AB
(fig. 15)

aa ' 402,
A =f(92*-ek) E§E=f'(92* _ek) a-e—k—..
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But £'(65, - 6x) = A tg o, hence

aAa
ae—k <-Atga (1.15)

By making use of the law of monotonicity, 692*/d9k <0 and
therefore from inequality (1.15)

dA
-&5-]-{-5 -Atga (1.18)

[NACA Comment: equation (1.18) is apparently in error.)

Thus, on the segment of the profile having a concavlity facing
the flow, the velocity drops and, as follows from relation (1.16),
its drop cennot be too slow. Inequality (1.16) differs essentielly
from relations (1.12) and (1.13), which show that on the convex
segment of the profile, the wvelocity cannot vary too rapidly.

Strictly speaking, these conditions are true up to those
changes in the flow that are brought about by an oblique shock
wave (fig. 15). By considering the characteristic of the second
family CZ*C]_ end its prolongation C1C, it is found that the

transition through the shock wave in the flow plane corresponds
to the displacement slong the segment of the strophoid C']_Cl

in the plane of the velocity hodograph (fig. 16). Hence, the
transforms of the segments Clcz*' and C,C of the character-
istic lie orn two different epicycloids of the second family. How-
ever, by meking use of the fact that at the point C'l the stro-
phold and epicycloid have a common tangent and the same radius of
curvature, it is found that with an accuracy up to small magni-
tudes of the third order, relative to the changes in velocity in
the shock wave, these two epicycloids may be considered as coin-
ciding. Inequality (1.16) holds with the same degree of accuracy.

5. Flow in Supersonic Region Arising from Presgence
of Straight Segment on Profile

The straight segment AB 1is assumed to be on the profile in
the supersonic region. The characteristic of the second family
CCox originates from the arbitrary point C, which is assumed to

be on the straight segment AB (fig. 17). At point C, the
equation is A= £(6g, - 6%).
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As point C moves along segment AB in the flow direction,
the magnitude 6, remains constant because of the rectilinearity

of the segment and the magnitude 63y, 1n accordance with theo-

rem 2, does not Increase. Hence, using the fact that £ 1is a
monotonically increasing function of its argument:

THEOREM 4. - On a straight segment of a profile in & super-
sonic region, the velocity in the flow direction does not increase.

It 1s assumed that the straight segment 1s located in the
supersonic region I (fig. 18).

From the ends of the straight segment to the transition line,
the characteristics of the first family AA;4 end BBj;, &and of

the second family AA;, and BB, are drawn. Let 6, =65 on

AB. From point C mnear point A, the characteristic of the
second family is drawn to the intersection wlth the character-
istic AA;, at point C'. From theorem 3, it is found that

e(a) =e(c') Z2e(c), but 8(a) = 6(C) = 6y, hence 6(C') = 6y
and, as egain follows from theorem 3, 6 = 8p over the entire
segment of the characteristic CC'.

By moving point C from point A +to point B, it is found
that the characteristics AAjy and BBpy necessarily intersect
and in the triangle ABD, formed by the segment AB and these
characteristics, 6 = 6; = constant. Hence, 1t follows that
A = constant and the characteristics of both femilies are
rectilinear.,

The entire region ABBZ* is represented in the plane of
the velocity hodograph by a single epicycloid of the second family,
as all the characteristics of the second family are represented by
e single epicycloid passing through the point € =6y, A= A(A).
Hence, over the entire region considered, a certasin Meyer flow
(rarefaction) will take place with straight characteristics of the
flrst famlly. Similarly, the entire region ABBl " is repre-
sented in the plane of the hodograph by a single epic¥cloid of the
first family, over which a Meyer flow (compression) will take
place with straight characteristics of the second family.

As was previously stated and as will be shown in section 6,
the realization of Meyer flows under the conditions of the problem
is impossible.

L0TT
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6. Impossibility of Meyer Flow in Local Supersonic Region

In the plane x,y, a Meyer flow 1s assumed to be between the
characteristics C, eand Cp of the second family with straight

characteristics of the first family (fig. 19).

From a certain polnt A of characteristic Cj;, the straight
characteristic of the second family is drawn to its intersection
at point B with the characteristic CZ° On the straight line AB,

the Mach angle o = constant, hence, it Iintersects the character-
istice Cp and Cp at the same angle 7y = x - 2a.

Set AB =1 and denote by £ the angle formed by the straight
line AB with the axlis of gbscissas. The stralght characteris-
tic A4B;, 1infinitely near AB, is considered. The segments of

the straight lines AB and A3By; are denoted, respectively, by
dsy and dspy on the characteristics C; and Cz and the angle
between AB and Aj}B) 1is denoted by d48. Thus, the following
equations sre obteined:

_ _xrdp _(r+1) a8
1 " giny dsp = sin y (1.17)

where r 1s the distance between point A end the point of inter-
section of the straight lines AB and 43B;.

Set the length of the segment A;By; equal to 1 + dl. From

figure 18, the equation 4l = (dsy - dsy) cos 7y 1s obtalned, or
by making use of equations (1.17) -

di =1 ctg 7 a8 (1.18)

In the plane of the hodograph, the characteristic Cy is
represented by an epicycloid.

The directions AB and A;B; coincide with the direction of
the normals to this epicycloid drawn at the points A' and A',,
corresponding to the points A and A; (fig. 20). The angle

between the radius vector and the direction of this normal is equeal
to the Mach angle o. Hence, B =a + 6 and 48 = 4o + 46,

Thus, by meking use of equation (1.18)

— =ctg 7(dx + d9) = - ctg 2a dx + ctg 7y 49 (1.19)
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or by integrating

1 /5in 2ag -
in e In /oo é/g ctg y de (1.20)
0

where 15, og, &and 90 characterize & certain initial point.

LOT1

For a>=xf4 and 6> 6o, both terms on the right of equa-
tion (1.20) are positive so that the following inequalities hold:

. /ein '
in & > 1n /E.Mz 1> 1 sin 200 (1.21)
20 sin 2« sin 2a

If . A->1, then o ->x/2 and 1>,

An entirely analogous result is obtained for the Meyer flow
between the characteristics of the first family with straight
characteristics of the second famlly. Thus

THEOREM 5., - A Meyer flow, between two characterlstics of one

family with straight characteristics of the second family, cammob
be entirely realized up to the 1line A =1 1in a finite reglon.

If on the characteristic C;, wrepresented in figure 19, the

equality A =1 1is attained at a certaln point D, then by making
use of the preceding result, it is found that the tangent at
point D to the characteristic Cl is asymptotic for any char-

acterlstic C, pleced relatively to C;, as shown in figure 191.

From theorem 5, it follows that along the straight part of the
profile in the local supersonic region, the megnitude of the veloc-
ity cennot be constant., If such were the case, then between the
characteristics of the second family originating at the ends of
this segment a Meyer flow would take place. This realization,
because of the finiteness of the local supersonic reglon, is
impossible as follows from theorem 5. Thus theorem 4 may be more
definitely stated as follows:

1According to S. A. Christianovich, if a Meyer flow originates
from a streight characteristic on which A= 1, the character- :
istics of the other femlily do not originate from thils straight
line,
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THEOREM 6. - On the straight segment of s profile in the super-

sonic region, the velocity decreases.

II - CONDITIONS FOR BREAKDOWN OF POTENTIAL FLOW
WITH LOCAL SUPERSONIC REGION

The occurrence of a wave resistance for a flow wlth large sub-
sonic velocity about a body 1s assumed to be comnected with the
instant when at any point on the surface of the body a velocity is
reached egual to the local velocity of sound.

‘The study of the results of & number of tests has shown, how-
ever, that the occurrence of a shock wave and therefore the arising
of a wave resistance sometimes takes place beyond Mqn.. Photographs
obtalned by the Toepler method show in certain cases a local super-
sonic region extended deep into the flow without any shock wave.

The necessity for the breakdown of the potential character of
the flow with locel supersonic region, that is, the necessity for
the appearance of a shock wave, has not yet been theoretically
demonstrated for a single case, It will therefore be of interest
to describe certain conditions that are known to be accompanied by
a breakdown of the potential flow.

1, Deformation of Contour

How the deformation of the contour can lead to the breakdown
of a previously existing potential flow is considered.

A flow with local supersonic region about a curvilinear con-
tour for a Mach number of the oncoming flow such that the flow is
potential (fig. 21) is considered.

From points A and B of the contour, the characteristics
of both families are drawn both in the flow plane and in the plane
of the hodograph. Because of satisfying the condition of monotonic-
ity of change of the angle on the transition line, the transforma-
tlons of the points Ap,, Boy, Ay, &and By I1n the hodogreph

plane are located on the circle A =1 in the same order as on the
transition line 1n the flow plane. The contour is deformed in such
a way that the segment of the arc AB +transforms into a straight
segment (fig. 22).
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By virtue of theorem 6, section I, the velocity along the
straight segment AB can only decrease. By drawing the character-
istics in the hodogreph plane and by making use of theorem 1, it
is found that the transforms of the points Ag,, Bpx, Aj1x, and
By are not located on the circle A =1 1in the order in which
these points are arranged on the transition line in the flow plane.
Consequently, the deformation of the contour bresks up the mono-
tonlcity on the transition line. Thus

THEOREM 7. - The characteristics of the first family that
originate from the points of a straight segment of the contour can
never end on the transition line but must fall on a shock wavse,

If the contour deformation considered 1s effected continuously,
it is evident that the breskdown of the potentisl flow occurs before
the deformed segment becomes straight. This fact permits the con-
clusion that at a given Mach number of the oncoming flow, any pro-
file convex to the flow can be so deformed that a new profile is
agein obtained convex to the flow, the flow about which for the
same Mach mumber is no longer possible without s shock wave.

2., Impossgibility of Formstion of Line of Discontimuity
Within Locel Supersonic Region

Investigation will reveal whether the impossiblility of realiza-
tion of a continuous flow within the supersonic region for given
boundary conditions, as expressed in the intersection of the char-
acteristics of one family and the formation of a supersonic shock
wave within the region, can be e cause for the breaskdown of the
potential character of the gas motion. .

Kédrmén (reference 3) makes the assumption that the probsble
cause of the appearsnce of shock waves 1ls the formation of an
envelope of the Mach lines In the supersonlc zone for a certsin
Mach number of the oncoming flow.

The envelope of the characteristics of one family, as shown
by S. A. Christianovich (reference 1), coincides with the line
of discontinuity that is determined as the geometrlic locus of the
points at which at least one of the derivatives 990/dx, 3¢/dy,
ONOx, or ONJy becomes infinite. Hence, to investigate the
problem of the possibility of the formation of supersonic shock
waves within the supersonic region on increasing the Mach number
of the oncoming flow, i1t is necessary to obtain the value of the
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acceleration at the points of the supersonlic region. It will be
shown that on the contour of the profile infinite accelerations
cannot occur,

Given a certain flow in the supersonic region with continuocus
transition from supersonic to subsonic velocities (sec. I, pt. 1,
case (a)); assume & certain point K on the contour in the super-
sonic region and take the x axis in the flow direction (fig. 23).
Equations (1.8) then become .

(Mz-l)%-k%g=0 g—;‘-xgg=o (2.1)

Thus
%2:%52‘];%%=-kg—;‘;=-%i}-‘£ (2.2)
g%--ks-% (2.3)

where k 18 the curvature of the contour at point X and R is
the radius of the curvature at this point. By making use of
inequality (1.14) and equations (2.2) and (2.3)

%‘ S% Atg a lg% =% (2.4)
From equations (1.20)
lg% 5% ctg a g%\ =% (2.5)

Relations (2.4) and (2.5) show that the megnitudes 36/dx,
36/dy, ONJdx, and JNJy are slways finite on the contour within
the supersonic region provided that everywhere R ;ﬁ O. The case
R = 0 (infinite curvature) at some point is a speciel case and mever
occurs on real profiles. Therefore, assume that on the contours
considered, at all points R> Ry where Ry is a certain constant.

The meximum possible value of the acceleration at the interior
points of a local supersonic region is computed. The differential
equations of the characteristics of the first and second families
in the plane x,y are, respectively,
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dy = tg(8 + o) dx dy = tg(6 - a) ax (2.8)

Moreover, along the characteristics of the first and second
families, respectively, the relations hold (see for example
reference 1)

0 + 0 = 2¢ = constant C - 0 = 2 = constant (2.7)
where
. 2
c=1-f \/ A_-1 2 (28
y 1 - [(x - 2)/(x+ 1)] 22
From relstions (2.8) and (2.7)
g% = tg(0 + a) %ﬁ- %% = tg(6 - a) gzg (2.9)

By differentiating the first relation with respect to ¢, the
second with respect to 1%, and by subtracting one from the other,
the following equation is obteined for the value of xv¢

N2 2
coszte-a) B(g;“l glg + tg(0-a) aagafl = COSZJ(-e.m,) a(g?) g-ﬂz + ©8(0w) %3%
(2.10)
From relations (2.7)
g = t+ 6= t-nq (2.11)

By making use of these equationes and choosing the coordinate
system so that the direction of the x axis coincides with the
direction of the velocity at some point A (fig. 24), the relation
between the partial derivatives of x at the point considered is
obtained from equation (2.10)

Rx 14+ a'(c) 3x . 1 + a'(C) dx (a'(o’) _ So

3Bt * einZx oSt simzax on - O ac

(2.12)
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Let d1 and ds be the lengths of the elementary segments of
the characteristics of the first end second families, respectively.
In passing from point A +to neighboring points in the directions
Indicated In figure 24, dI and ds will be tzken as positive

dx ox dl a1 dx ox ds ds
a—£=-a—zaz=-cosa,&- §ﬁ=$aﬁ=cosm?ﬁ (2.13)

where the derivative d1/dt is teken along a characteristic of the
second family and the derivative ds/ dn 1s teken slong a char-
acteristic of the first family. By making use of equations (2.13),
relation (2.12) can be reduced to one of the two following forms:

S-coscn—g> l;;%—éc—) cosa.—E> __igi(__)_ds =0

2 sinu. dny
(2.14)
d ds 1+ a'(o) ds\ _ 1+ a'(o) &1 _
ag<°°s @ d'q> Y Tgin 2o \°® %@ Zeima af O
(2.15)

Along the characteristic £ = constant, relation (2.14) may
be considered as an ordinary differential equation relative to the
magnitude cos o 42 / dt and similarly along the characteristic
1 = constant, the relation (2.15) may be considered as en ordi-
nary d.ifferential equation relative to cos o ds/dn. By setting
z = cos o 4l /d.ﬁ s Tthe following linear equation of the first order,
based on equation (2,14), is obtained for determining =z along
the characteristic ¢ = constant:

4z _ l+a! (0) . Lia'(0) dz _
an * 51n 2a "2 s8inady © (2.16)

The solution of this differential equation has the form

= 1+at (0) 1+at (0) as
2= exp- f sinZa. dn ZO"'f oxp f sin 2o N % eim o af O

0

~-=:(2417)

where Mo 1s the value of 1 eat a certain initiel point on the
characteristic considered, £ = constant, and Zg = cos ao(az/ag)o

is the value of 2z at this point. The integral under the sign of
the exponential function in equation (2.17) can be readily computed,
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if the magnitudes entering the expression under the integral are
expressed in terms of the Mach angle o, by making use of the

relation
A= 4/5 o1

Y sin? o + (x-l)/z

and the reletions

= Atg o

a
dn = 40 = - @9 =

which hold elong the characteristic of the first family £ = constant,

the first of which follows from relations (2.7) and (2.11) and the
sacond of which was already obtained in section I, part 4. The
following expression is thus obtained:

1

in%, [s:l.n‘{2 ono + 1/2(x-;2]_2:x-l:

n

f L+ a'(0) g0 gy ,/E&g_ et

/ sin 2a € % |ginfa, [610% o + 1/2(x-1)]
. . sin® o

(2.18)

Hence, by replacing in equation (2.16) the magnitude z by its
expression, and denoting by G(a,x,) the expression under the

logarithm sign in (2.18)

7
cos a %zf = m co8 ‘ayy (%I-E)O + f Gla,ag) ;'—"'%'T(ng% -g-:; dn
1
° (2.19)

An entirely similar solution of equation (2.15) gives

cos @ %% = Giiﬂo’ °o8 %o @%)o i 5\/ Gz, ap) %Jrzinca at af
Y . (2.20)

By making use of the property of monotonicity of change of the
magnitude of the velocity and the angle of inclination of the
velocity vector along the characteristics in the local supersonic
region (sec. I, pt. 3), it is noted that d1/dt 2 0 and ds/an = 0.

Lotr,
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Moreover, aof(g) > O. Hence,from equations (2.19) and (2.20),
the following lnequalities are obtained:

cos a %ZE = cos o (ng)o mi—'-m—oy (2.21)
cos a §£ 2 cos a, ) —(&.%%)- (2.22)

In order to obtain the accelerations at a certein polnt K of
the locsl supersonic region, the characteristics of the first end
second famllies are drawn from this point up to the intersection
with the contour at points A and B, respectively (fig. 25).
Let o = %a1 and o = %ao at points A and B, respectively.

Also, let the radii of curvature at A and B be Bl and Ry,
respectively.

The inequalities (2.21) and (2.22) at the point XK are con-
sidered where point B is teken for the initial point in inequal-
ity (2.21) and in inequality (2.22) point A is used. By making
use of relations (1.14), (2.1), and (2.7), approximations are

eesily obtained for the magnitudes 4 £/dl at point B and dn/ds
at point A

[} 2 . a 2
IEZE 5 < -ﬁ-z- cos oy IE‘?I < -ﬁ]-. COS Opp (2.23)

By teking the direction of the x axis at point K along a
gtreamline, the following equations are obtained:

gi <_§ _11 52 zsincr.<_i _Tl>

x~ " 2 coe o cos a 3y T ai
3A MN_ _Atgao (dE ___n
3z © 2coscc.<_l1 _§> Sy - T 2 sin o \&
(2.24)
where the reletion o'(A) = - ctg o/ is used. By making use of

inequalities (2.21), (2.22), and (2.23) and equations (2.24) at
point X, the following inequalities holding at this point are
finally obtalned:
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% < E'(“ol’R.L) + L(a,oz,Rz)] N(z) J/Tg o "

LY
A

< E(%l,Rl) + L(“oz:Rg_)] N(a)/ ctg o

% < E‘(“Ol’Rl) + L(%Z,Raﬂ N(a) A tg m_«/tg a

gg-r‘ < E'(“ol:Rl) + I.(aoz,Rzﬂ N(a)A Vg o (2.25)
where
D
r sin® o ;'2 X-1 N(op)
N(a) = L{on,R) = Vet
() sin%e + 1/2(x-1 (¢ _ ) R 8 %

The inequelities ( 2.25) show that the sbsolute values of the
derivatives cannot exceed certain finite values, depending on the
Mach mumber at the glven point of the supersonic region and the
minimm fixed radius of curvature on the part of the contour that
is & boundary of the supersonic region.

The assumption that the cause of the formation of & shock wave
is the emvelope of the characteristics within the local supersonic
region is therefore invelid. Thus » 1t is possible to formulate

THEOREM 8, - If for certain conditions determini the motion
of the ga.s2 & _potential flow existed with local supersonic region,

the formation of a shock wave within or on the boundary of the
supersonic region, arising from any change in these conditions 3
cennot be preceded by the occurrence of infinite accelerations at
the interior points of the supersonic region, That is, if the
curvature of the part of the contour lying in the supersonic region
does not_become infinite. e - - -

ZWhen the flow about the body is infinite, the conditions
determining the motion of the gaes are the Mach number of the oncom-
ing flow and the shape of contour of the body.

X

LOTT



NACA TM No. 1213 23

The theorem obtained refers only to the internal points of the
supersonic region. From inequalities (2.25), no conclusion can be
drawn as to the finiteness of the accelerations on the transition
line because the right-hand sides of three of them approach infin-
ity as the tranmsition line is approached. Hence, the question
whethexr the shock waves are preceded by the occurrence of infinite
accelerations et the points of the transition line remains open.

3. Criterion of Collapse of Potential Flow

In section IT, part 1, it was shown that a deformation of the
contour can lead to the collapse of the potential flow. Before the
deformation of the curvilinear segment of the contour at its points,
the inequality dMNa(-6;) > - Atg o holds. At the end of the

deformation, however, at the points of the obtained straight seg-
ment, d%/d(-ek) = -, as follows from theorem 6.

Hence, for any intermedlate state of the deformed contour
there is first attained, at some point of the segment, the equation

ar  _
-az—_@ = - >\tg (o4 (2.26)

This state of the deformed contour is, in a certain sense,
critical because for further deformation of the contour, inequal-
ity (1.13) breaks down and thus the flow becomes impossible with-
out a shock wave,

In the given case condition, equation (2.26) is the criterion
of breekdown of the potential flow. ZEquation (2.26) may also be &
criterion for the breskdown of the potential flow in the case where
the flow is ebout & fixed contour but where the Mach number of +the
oncoming £flow increases.

If for a certein Mach number, & potential flow existed with
local supersonic reglon and et the points of the contour, the
inequelity

ar >
W }\‘tga.

were satisfied, then If with increase in the Mach number of the
oncoming flow inequality (1.13) starting from a certain Mach number
breaks down, this limiting Mach number would correspond to the
attaining of equation (2.26) at some point of the contour.
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The Mach number of the oncoming flow, for which at some point
of the contour condition (2.26) is satisfied, will be denoted as
the breakdown Mach number M¥,

The number M¥ 1is thus the limiting Mach number beyond which
the body is subJject to wave resistance. ’

The breskdown criterion (2.26) can be conveniently repre-
sented in another form, by considering the magnitude

0.5 = 8 = ®(Ay) (2.27)

vhere qﬁx) is a known function shown in figure 4. By differen-~
tlating this equatlion slong the contour :

ae oA | ae
= - E YOO % T

But m'(hk) = 1/(Aktg ak) so that the following equation for
the breakdown criterion is obtained equivalent to (2.26):

ae

e _
3= =0 (2.28)

It should be noted that the breekdown of inequality (1.13) at
eny point of the contour does not lead to the breskdown of the
potential character of the flow near this point but meskes impossible
the ending of the characteristics of the flrst famlly from the
neighborhood of this point on the trensition line as the law of
monotoniclty would otherwise fail to hold at the transition line.
The characteristics of the first family must, in this case, merge
in the shock wave.

In order to determine the magnitude M¢ of a given contour,
1t is necessary to know how for an increase in the Mach number of
the oncoming flow, the value of the velocity at the points of the
contour changes for a potential flow with local supersonic reglon.

At the present time, certalin methods are known for the approxi-
mate solution of the problem of the flow about a fixed contour for
Mach numbers exceeding M,,.. (See, for exemple, references 4 and 5.)
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In gll these methods, the convergence of the process of the
successive gpproximations has not been proven; hence, the results
of the computations made with the gid of these methods must be
regarded with reserve. It seems probeble, however, that up to
the time when the potentiel flow is actually possible, these methods
at least qualitatively represent the true character of the change
in the distribution of the velocity on a fixed contour with increase
in the Mach number of the oncoming flow.

It is thus of interest to see whether from these solutions
there is & tendency toward the aettalnment on the contour of the
condition (2.28) with increase in Mach number.

From the geometric data of a well and distribution of the
velocity along the wall, obtained in the work of Gortler (refer-
ence 5) for a Mach number of the oncoming flow M = 0.9, the angles
of inclination Gl* vere computed using equation (2.27). The

pattern of the lines of flow and the lines of equal velocities for
this case 1s shown in figure 26. The dependence of 6,4, on the

coordinate along the wall ¢ is represented in figure 27.

As may be ssen, the flow is near the breskdown. The monotonic
decrease of the angle proceeds up to £ = 5.5, after which the
angle remains almost constant or slightly decreasing.

In figure 28 1s shown the dependence of 8ix on x for the

flow ebout the profile, which is considered in an Americen inves-
tigation a8 M =0.75 &and M = 0.83. The velocity distribution
over the contour and the boundaries of the local supersonic region
are shown in figure 29. In figure 28, it is very clearly seen’
that the tendency toward a breakdown of the monotonicity on the
transition line increases with lncrease in the velocity. At

M = 0.75, somewhat exceeding M.,., ~the angles decrease almost

as fast as on the contour., F¥or M = 0.83, the monotonicity of
change of the angle 61, bhas already broken down. Hence, at

M < 0.83 there is already a breekdown of the potential f£low neaxr
this profile. Strictly spesking, the breskdown for M = 0.83 no
longer has significance. Thus, in the glven solutions, a tendency
is revealed to attain on the contour condition (2.28) on increas-
ing the Mach number of the oncoming flow.
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4, Infinite Accelerations in Accurate Solutions

In section II, part 2, it is shown that an infinite accelera-
tion on a contour can occur only if the curvature of the contour
at any point is infinite.

An exact solution of a certain flow with local supersonic region
with the occurrence of infinite acceleration at two symmetric points
of the contour was given by Ringleb (reference 6). According to the
results of this section, thls flow indicates an infinite curvature
of the contour at these points. Figure 30 shows the flow pattern
and the veloclty distribution. At points P and @ of the contour,
Ringleb obtained infinite values of the derivative of the velocity,
that 1s, infinite accelerations. It is found that in the plane of
the hodograph, at the points corresponding to P and ¢ in the
flow plane, the transform of the streamline and the epicycloid have
& common tangent.

In the work of KArmén during 1941 (reference 3), the Ringleb
solution is analyzed 1n deteil with the object of showing for this
type of flow the possible reasons for the formation of shock waves
in the local supersonic regions. KérmAn showed thet if at the con-
tour in the supersonic region there is a point with infinite accel- -
eration and a value of /6 # = (where V¥ is the stream func-
tion end & 1is the angle of inclination of the velocity vector)
then, as in the case of Ringleb, the transform of the streamline
in the plane of the hodograph touches the epicycloid at a point
corresponding to the point with infinite acceleration in the flow
plane. Khrman identifies this contact in the hodograph plane with
the presence of an infinite acceleration &t the corresponding point
of the flow plane. He does not, however, observe the fact previously
pointed out that the presence of an infinite acceleration at any
point of the supersonic flow indicates the presence in it of an
infinlte curvature of the streamline, and assoclates the infinite
acceleration, in this particular case, with the impossibility of &
continuous flow in the genersl case. This lack of observetion is
indicated by the fact that with the aid of the previously mentioned
condition of the tangency in the plane of the hodograph, Kbhrmhn
seeks an infinite acceleration on the contour of the NACA-4412
profile, which has no infinite curvatures, making use of the exper-
imental distribution of the velocity on the contour. In the plane
of the hodograph, Kérman obtains the point of tangency of the
transform of the contour with the epicycloid but corresponding to
this point of the contour of the profile, infinite acceleration
does not occur as should be the case. No satisfactory explanation
of this fact contradicting his results is given.

'
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This noncorrespondence is explained by the fact that the tan-~
gency In the plane of the hodograph cen occur simultaneously with
the condition OY/d8 = &t the point considered on the flow plane.
An example of this is the Meyer flow, that is, the flow about a
certain contour for which the entire contour coincides in the plane
of the hodograph with the epicycloid but nevertheless, at the points
of this contour, the acceleration is finite 1f the curvature is
finite.

Moreover, under the conditions of the problem of the flow with
local supersonic region, the tangency in the plane of the hodograph
of the transform of the contour with the epicycloid is equivalent
to condition (2.26) at the point of the contour corresponding to
the point of tangency, because at this point of the contour the
acceleration is finite 1f the curvature of the contour is finite.

In recent times, investigations have gppeared on exact solu-
tiong of the problem of flow with local supersonic regions where
the equations of S. A. Chaplygin, in the plane of the hodograph,
are used. Notwithstanding the fact that in these papers examples
are given of the existence of potential flows with local supersonic
region, the value of these investigations is limited by the fact
that with change in the Mach number of the oncoming flow there
occurs simultaneously a deformation of the contour of the body.
Due to this fact, points with infinite acceleration appear within
the supersonic region, which on the basis of the theorem proved in
section II, part 2 indicates an infinite curvature of the contour
et these points.

From the foregoing considerations, it is evident that it is a
mistake to associate the occurrence of such a limiting line of the
contour with the impossibility of a potential flow with local
supersonic region about a fixed profile.

The investigation of the principal properties of a flow with
local supersonlc region must, in the opinion of the author, be
carried out directly in the flow plene.

In the work described herein, all results were obtained
directly from investigations in the flow plane.

Translated by S. Reiss
National Advisory Committee
for Aeronautics
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